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EXPER1MENTP.L TECHNIQUES FOR DETERMINATION OF THE ROLE OF 
DIFFUSION AND CONVECTION IN CRYSTAL GROWTH FROM SOLUTION 

L. Zefiro 
Genoa University Mineralogy Institute 

The first significant studies of the role of the solution around /663* 

a growing crystal are probably attributable to Lehmann (1877), who de- 

veloped various techniques for obtaining a qualitative indication of 

the concentration field around a crystal. For example, he utilized 

su5stances which produced vividly colored colutions, and observed the 

variations in chromatic intensity near the crystal. 

In 1904, Nerst hypothesized that the concentration of the solution 

in contact with the crystal was the saturation concentration, C,. But 

measurement of the index of refraction based on the angle of total in- 

ternal reflection of NaC103, NaN03, KA1(S04)2 and 12H20 (as accomplish- 

ed almost simultaneously by Miers), resulted in a Co value for the con- 

centration, such that 

where C, is the concentration of the supersaturated solution far-away 

from the crystal. 

Subsequently, Berthoud (1912), Valeton (1924) and Friedel (1926) 

distinguished two phases in the growth mecha?' I lsm: 

a) material input by diffusion, and 

b) incorporation into the crystal, . , 

governed by the following equations: - /664 

where dm/dt = the quantity of solute at the moment when it is being 
augmented by diffusion and is being diminished by crys- 
tallization; 

*Numbers in the margin indicate pagination in the Italian text. 



D = the diffusion coefficient; 

d = the width of the layer of solution involved in the diffu- 
sion process; 

k = the growth rate coefficient of one face of the crystal. 

By eliminating Cot whjch appears in both equations (1) and (2). 

we obtain the following equation: 

D where d - (D/K) = the effective growth rate coefficient, according 
to Friedel. 

Berg (1938) , Bunn (1949) and Humphreys-Owen (1949) measured the 
concentration by means of an interferometric technique consisting of 

placing a previously formed NaC103 crystal in solution between two 

glass plates which have been silvered so as to be partially reflective, 

and which form a small angle (see Figure 1). Upon illumination by / 6 6 5  - 
monochromatic radiation, a system of interference fringe-; is formed. 

If the planarity of the plates is accurate, and if the index of refrac- 

tion of the solution within the angle is uniform, then these fringes 

are rectilinear. 

-- llfonl H.P. 3 photag.phie plru tau,% - x ZO) 

Figure 1. Diagrammatic representation of the apparatus 
utilized by ~umphreys-0wen (Proc.Roy.~oc., 1949, 
page 220). 



Local variations in the index of refraction, due to diminished 

concentration near the growing crystal, cause the fringes to curve 

(see Figure.2). This phenomenon makes it possible to evaluate the 

distribution of the index of refraction, and also the concentration 

distribution (see Figure 3 ) ,  base6 on the linear relationship between 

these two factors. 

Based on the data obtained, it was concluded that the concentra- 

tion was not uniform along the faces of the crystal but was minimal 

at the center of the faces, where, on the other hand, the concentra- 

tion gradient normal to the face was maximal, i.e., proportional to 

the crystallization flow under t b e  hypothesis that the solute incor- 

poration 11-echanism is purely diffusive. 

Figure 2. Interference fringes Figure 3. Concentration distribu- 
obtained by means of tion around a growing 
the apparatus shown crystal, obtained by ex- 
in Figure 1. amination of an interfer- 

ometric pattern sach as 
that shown in Figure 2. 

Figure 5. Dendritic growth. Figure 4. Normal growth. 



In order to obtain an immediate qualitative interpretation of the 

fringes, both Humphreys-Owen and, lat€r, Kceuger and Miller (1953) ar- 

ranged the semi-silvered plates in a parallel configuration, and obtain- 

ed the same type of concentration distribution. 

However, this method has the disadvantage that the growing crystal 

does not always completely fill up the space between the two plates. 

Thus, diffusion occurring relative to the upper face can adversely af- 

fect the results. 

From the fact that the face grows planimetrically, Berg deduced 

that there should be a transport of material along the face in one lay- 

er, perhaps too slight to be observable by means of the interferometri: 

technique utilized, comprising a transition between the solid and li- 

quid states, similar to that introduced by Vollmer (1932) for melting 

growth. 

During the 1949 Faraday Society conference on crystal growth, - /666 

Frank opposed this hypothesis on the ground of considerations concern- 

ing the average free exchange of solute molecules. He voiced the opin- 

ion that, in relation to the geometry of the system, it was not justi- 

fiable to leave the convection factor out of considerati~n. The pres- 

sence of convection would of course invalidate the assumption that the 

solute flow was directly proportional to the normal component of the 

c~ncentration gradient. 

Study of solution growth was advanced by a group of researchers 

at the University of Strasbourg: Goldsztaub and Kern (1953), Folleni- 

us (1959), Quivy (1965), Itti (1966) and Golhsztaub, Itti and Mussard 

(1969), all of whom utilized polarized white-light interferometric tsch- 

niques based on a Baker interferential microscope or a dual-refracting 

Franqon interferometer . 

In this type of apparatus, two beams interfere so as to create a 

birefringent beam which passes through the specimen. Thus it is poss- 

ible to measure the optical delay between the perturbed zone of the 



solution and a second zone which is far away enough from the crystal to 

be considered "undisturbed." 

Once the specimen is aligned in a parallel configuration, the in- 

terference fringes around the crystal are equiconcentrically curved with 

respect to the solution. Based on the forms of the fringes, it is poss- 

ible to distinguish two types of growth: 

a) regular growth, in which the fringes, which are approximately 

parallel to the faces, intersect near the corners (Figure 4 ) ;  

b) dendritic (or skeletal, depending on the nomenclature adopted) 

growth, in which the fringes follow the contour of the crystal, 

but without ever intersecting (Figure 5) . 

The results obtained have been interpreted to a first approximation, 

taking into consideration diffusion alone, and considering the problem 

to be two-dimensional. Thus, Fick's equation is utilized: 

In order to integrate Fick's equation ( 4 ) ,  the initial condition is pos- 

ited that at time t = 0, the concentration is constant, 

as are the limit conditions 

and the conditions along the face, according to which the growth is 

classified as either dendritic or regular, respectively: 

Co = constant, or &/an = constant 

Full integration, as accomplished by Boscher, indicates qualita- 

tive agreement between the c(x,y,t) function and experimentally deter- 

mined fringe development. 



The next step consists of comparing the growth rate Vm measured 

at the center of the face and the growth rate Vc calculated according 

to the following relation: 

where p is the density and S is the area. 

The solution of the one-dimensional Fick equation, 

with suitable contour conditions, derives from the following relation: 

where 

The concentration gradient calculated for x = 0 is: 

Thus, it is possible to calculate Vc and to note that in many instan- 

ces 

Vm = 2Vc ( 9  ) 

The factor of 2 can be explained by the fact chat the measured 

growth rate is an average rate, whereas the calculated growth rate is 

an instantaneous rate. Consideration of the mean value of Vc during 

the time interval between T1 and T2 yields the following relation: 



Since it has been found experimentally that, except for during 

the initial period, (>C/~X)~ remains nearly constant, it can be pos- 

ited: 

whereby : 

It must be noted that the apparent relation between Vc and Vm 

derives solely from application of the relation in equation (ll), 

which cannot be justified on the basis of diffusion alone. Therefore, 

it is necessary to take into account convection as well. 

On the simplified hypothesis that the convection rate is constant 

with respect to the variation of x and t, the equation governing the 

transport of material becomes: 

where V is the convection rate. For the concentration gradient on 

the face of the crystal, one obtains the following relation: 

By assigning increasing values to the convection rate, the curves 

illustrated in Figure 6 are obtained. It would appear that the intro- 

duction cC convection causes a decrease in deviation from the experi- 

mental curve. 



Figure 6. Variation in growth rate as a function of time. 

1 = theoretical flow for diffusion alone 
2 through 6 = introduction of convection into 

growth rate calculations 
7 = experimental curve 

Study of Growth from Solution by Means of Holographic Interferometry 

Hologra?hic interferometry (which had previously been utilized in 

our laboratory in order to obtain a record of the microscopic topogra- 
phy of the surfaces being studied) was app7-ied to the study of growth 

from solution. 

An advantage of holographic interferometry is that it effects a 

correlation between the two wave fronts and not between the front of 

the wave being studied and a plane wave, as does conventional inter- 

ferometry. 

Furthermore, the coherence of the laser source utilized makes it 

poss,ble to study larger volumes of solution, and thus makes it easier 

to follow the convective phenomena. 

An example of the experimental apparatus assembly utilized is 

shown in Figure 7 ,  and illustrated schematically in Figure 8. 



Figure 7. Experimental apparatus assenbly utilized to study 
growth from solution by means of holographic inter- 
ferometry. 

Figure 8. Schematic diagram of the apparatus shown in Figure 7 .  

BS = beam splitter 
P = polarizers 
0 = objectives 

L = lenses 
M = mirrors 
H = holographic plate 



The two c o l l i m a t e d  l a s e r  beams, o b t a i n e d  by means o f  t h e  beam 

s p l i t t e r  BS, a r e  e n l a r g e d  by o b j e c t i v e s  0 and l e n s e s  L.  One o f  t h e  

two beams p a s s e s  t h rough  t h e  specimen,  and t h e  o t h e r  s e r v e s  a s  t h e  

r e f e r e n c e  beam. Both beams a r e  r e f l e c t e d  by m i r r o r s  M o n t o  t h e  ho lo-  /670 

j r a p h i c  p l a t e  H where t h e y  i n t e r f e r e ,  c r e a t i n g  a  f r i n q e  p a t t e r n  w i t h  

s i n u s o i d a l  ampl i tude  t r a n s a i s s i o n  and a  f r i n g e  p e r i o d  011 t h e  o r d e r  

of one micron,  which can  be r eco rded  a c c u r a t e l y  by t h e  h o l o g r a p h i c  

emuls ion ,  due t o  t h e  l a t t e r ' s  h i g h  r e s o l u t i o n  (2500  l ines/mm).  

A f t e r  development,  t h e  p l a t e  i s  r e p l a c e d  e x a c t l y  i n  i t s  i n i t i a l  

p o s i t i o n  and i l l u m i n a t e d  by t h e  r e f e r e n c e  beam. The m i c r o f r i n g e  p a t -  

t e r n  r e g i s t e r e d  on t h e  p l a t e  r e v e a l s  (by means o f  d i f f r a c t i o n )  a  wave 

f r o n t  e q u a l  t o  t h a t  which h a s  passed  th rough  t h e  specimen. 

I f  t h e r e  has  been any change i n  t h e  s p e c i ~ n e n ,  t h e  wave f r o n t  

which p a s s e s  t h rough  it w i l l  be a f f e c t e d ,  and w i l l  i n t e r f e r e  w i t h  t h e  

wave f r o n t  r e c o n s t r u c t e d  by t h e  hologram, t h u s  c r e a t i n g  i n t e r f e r e n c e  

f r i n g e s  which i n d i c a t e  where an o p t i c a l  change i n  t h e  specimen h a s  oc- 

c u r r e d .  

Th i s  t e c h n i q u e ,  when u t i l i z e d  t o  f o l l o w  t h e  e v o l u t i o n  o f  t h e  pl- 

nomenon, is termed " r e a l - t i m e "  i n t e r f e r o m e t r y .  

The image of  t h e  specimen i s  f i l m e d  by a t e l e v i s i o n  camera,  r e c o r d -  

ed by a  v i d e o r e c o r d e r  and d i s p l a y e d  on a  mon i to r .  

- - - - -- - - - 

F i g u r e  9 .  D i f f u s i o n  f r i n g e s  i n  a  K C 1  s o l u t i o n .  



The first application of this technique is the determination of 

the diffusion coefficient for a layer of solution whose concentration 

is Co at a height at whi.<.:> LC diffuses toward an overlying solvent col- 

umn whose height is b - a. 

In order to obtain the concentration distribution c(x,t) at level 

x and tin,, t, it is necessary to solve the Fick equation for the fol- 

lowing initial conditions: 

(x.0) = Co for 3 < x < a 

(x,O) = 0 for a <  x <  b 

which results in a Fourier series of the following type: 

The variations in the index of refraction corresponding to changes /671 +~ -- . 
in concentration are indicated \olographically by means of a pattern of 

horizontal fringes (see Figuze 9) . 

Based on the correspondence between c(x,t)/CO and the expression - /672 
[n(x,t) - n(H20) ]/nG where n(, is the index of refraction of the solu- 
tion having concentration Co, it is possible to obtain a reasonable 

2 value fcl 7 of 2 x lo-' cm /sec. for diffusion of a 10% KC1 solut~on. 

The growth of NaCIOj in a vessel 20 nm in diameter and 1 m wide 
was also studied. The vessel was placed in region "A"  of the diagram 

shown in Figure 8, in horizontal and vertical positions, the better 

to demonstrate convective movements, with the results shovm in Figure 

10 and Figure 11, respectively. 

Examination of Figure 10 will reveal that the concentration is con- 

stant parallel to each face, except near the cornerc Simply by count- 

ing the number of fringes and referring to the concentration C, of the > 4 

supersaturated solution at a distance from the crystal, it can be deduc- . .  



Figure 10. Growth of an NaC103 .rystal: horizontal view of 
the vessel. 

Fiqure 11. Growth of an NaCIOj crystal: vertical viev of 
the vessel. 
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ed that C O #  the concentration of the solution in contact with the crys- 

tal, assumed a different value depending on the face being studied, and 

has a maximum value in relation to the corner. 

In Figure 11, it will be noted that, due to the established convec- 

tive regime, an ascending "chimney" fonns in relation to the upper hori- 

zontal face of the crystal. This "chimney" allows evacuation of the less 

supersaturated solution from the zone nearest the crystal. The other, 

more supersaturated solution replaces it, thus increasing the growth rate. 

3 Tests carried out on solution volumes on the order of 30 cm , suit- 
ably thermostat-controlled with regard to temperature, have also indicat- 

ed the predominant role played by convection. 

In order to obtain a quantitative interpretation of the experimental 

results, it will be necessary to work in two different directions: 

1) to study capillary grot-th as Marsiglia B. Simone of the Crystal 

Growth Mechanism Research Center is doing. If the crystal occu- 

pies the entire section of the vertically positioned capillary, 

then it would appear to be correct to state that the growth of 

the lower horizontal face is governed by a purely diffusive mech- 

anism. The advantages of the analytic interpretation are oppos- 

ed by the geometry of the problem, which implies an indirect re- 

lationship between the fringes and the concentrations. 

2) to replace the television camera with a quadratic photodiode ma- 

trix, digitalize the data obtained and analyze them by means of 

a computer. 

It can be hoped that in this way it will be possible to describe the 

c(x,y,t) function by taking into account both the diffusion and convection 

mechanisms. 
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